Carbon dioxide-expanded liquid substrate phase: an effective medium for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol

Fengyu Zhao,^{a,b} Shin-ichio Fujita,^a Jianmin Sun,^a Yutaka Ikushima^{b,c} and Masahiko Arai^{*a,b}

aDivision of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan. E-mail: marai@eng.hokudai.ac.jp; Fax: 181-11-7066594; $Tel: +81-11-7066594$

b CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

 c Supercritical Fluid Research Center, National Institute of Advanced Industrial Science and Technology, Sendai 983-8551, Japan

Received (in Cambridge, UK) 4th June 2004, Accepted 29th July 2004 First published as an Advance Article on the web 7th September 2004

It has been shown that CO_2 -expanded cinnamaldehyde liquid phase is a unique and effective medium for cinnamaldehyde hydrogenation to cinnamyl alcohol, due to interactions between the $C=O$ group of the substrate and $CO₂$ molecules and increased solubility of $H₂$.

The use of supercritical carbon dioxide ($\sec O₂$) as an environmentally benign solvent for organic synthetic reactions is currently receiving much attention. However, a drawback of scCO₂ prevents its utilization in homogeneous catalytic synthesis, due to its low ability to dissolve organometallic complexes. Some attention has been paid to enhancing the solubility of metal complexes in scCO₂ by using ligands with an affinity for CO_2 .^{1,2} Is the homogeneous phase really efficient for all the catalytic reactions in scCO_2 ? It was reported that insoluble rhodium complexes exhibited high activity and selectivity for hydroformylation of 1-hexene in scCO_2 ,³ and a faster reaction rate was obtained in two-phase than in single-phase for α -pinene hydrogenation in $\sec O_2$ with Pd/C catalysts.⁴ Moreover, scCO₂ was reported to be dissolved in organic liquid substances and, in some cases, the solubility of $CO₂$ can approach a value much higher than 80 mol% in the vicinity of mixture critical point. The dissolution of $CO₂$ in an organic solvent is also accompanied by a significant volumetric expansion of the liquid phase. Subramaniam and Busch reported that $CO₂$ -expanded CH3CN solvent is an effective reaction medium for cyclohexene oxidation with TPP/FeCl catalyst.^{5,6} And an increase in enantioselectivity has recently been reported for asymmetric hydrogenation of atropic acid in CO_2 -expanded [bmim] PF_6 phase.⁷ In the present communication, we will show that $CO₂$ -expanded cinnamaldehyde (CAL) liquid phase using no organic solvent is a significantly effective medium for its selective hydrogenation to cinnamyl alcohol (COL) (Scheme 1) and that this is due to interactions between the substrate and $CO₂$ molecules, confirmed by in situ FTIR, and increased $H₂$ concentration in the liquid phase.

Table 1 shows the results of CAL hydrogenation and phase behaviour observations.[†] When the quantity of CAL was 0.2 mmol

and that of Ru complex 0.075 or 0.15 µmol, the reaction system was in a single phase and the selectivity of COL was smaller than 30% (entries 1, 2). When 0.68 µmol of Ru complex was used at a higher $CO₂$ pressure of 16 MPa, the total CAL conversion increased to 55% while the COL selectivity did not change (entry 3). Under the conditions for this run, the system was in a two-phase mixture including a small volume of CAL-rich liquid phase. In addition, CAL hydrogenation was also examined under solventless conditions and in high pressure N_2 and CO_2 under two-phase conditions with using a large amount of CAL of 7.5 mmol (entries 4–7). Under the solvent-less conditions, a high COL selectivity of 88% was obtained (entry 4). When the CAL liquid phase was pressurized by 8.5 MPa N₂ (entry 5), the total conversion and COL selectivity did not change compared to these obtained under solvent-less conditions. However, 8.5 MPa CO_2 was used instead of N₂, the total conversion was enhanced to 24% from 11% and the COL selectivity to 91% from 88% (entry 6). When CO₂ pressure was further raised, the total conversion was further enhanced and the COL selectivity was also improved, which was 98% at 16 MPa (entry 7) in which the reaction mixture included a $CO₂$ -rich gas phase and a large volume of CAL liquid phase dissolving $CO₂$ $(CO₂-expanded$ liquid phase). Thus, the influence of phase

Scheme 1 Hydrogenation of cinnamaldehyde in compressed CO₂.

Table 1 Results of CAL hydrogenation with Ru complex in compressed $CO₂$

Entry	Ru/µmol	CAL/mmol	CO ₂ pressure/MPa	Conversion $(\%)$	Selectivity $(\%)$			
					COL	HCAL	HCOL	Phase present ^{a}
	0.075	0.2	10		25	48	27	G
	0.15	0.2	10		23	51	26	G
	0.68	0.2	16	55	24	50	26	G' , L
	50	7.5	_		88	Q		G^c . L
	50	7.5	$8.5 N_2$		88	10		G^d , L
₆	50	7.5	8.5	24	91			G, L
	50	7.5	16	54	98			G, L

^a G: CO₂-rich gas phase, L: CO₂ expanded CAL liquid phase. ^b Very small droplets of CAL and/or catalyst were observed. ^c H₂-rich gas phase.
^d N₂-rich gas phase. Reaction conditions: bis(pentafluorophenyl)p time, 2 h. The Ru complex is completely soluble in CAL under these conditions used.

Fig. 1 FTIR spectra of pure CAL (gas) and CAL dissolved in compressed $CO₂$ as well as in H₂ and $CO₂$ mixture (dotted line) at 50 °C.

behaviour was significant and the presence of high-pressure $CO₂$ was requisite for selective CAL hydrogenation.

The present results demonstrate that larger conversion and larger COL selectivity can be obtained for CAL hydrogenation in $CO₂$ -expanded CAL liquid phase. A few factors should be taken into account to explain these results. (1) CAL concentration. Although $CO₂$ and $H₂$ are dissolved in the CAL phase, the CAL concentration is still large in this phase. High CAL concentration was previously reported to benefit the formation of COL with heterogeneous catalysts.^{9,10} (2) H_2 concentration. The concentration of H_2 in the CO₂-expanded CAL phase should be larger compared with that in the absence of $CO₂$ because a large quantity of $CO₂$ dissolved in the CAL phase favors the dissolution of $H₂$. (3) Compressed CO₂. The mass transfer resistance and substrate inhibition, if existed, should be reduced in CO₂-expanded CAL and $\rm scCO$ ₂ phases. Note that compressed $\rm CO_2$ increases the CAL conversion and the COL selectivity but compressed N_2 does not; hence, hydrostatic pressure to the CAL liquid phase is insignificant. So, direct effects of $CO₂$ may be assumed, and this was examined by FTIR. \ddagger Fig. 1 shows FTIR spectra from 1800 to 1600 cm⁻¹ for CAL molecules dissolved in different gaseous mixtures at 50 $^{\circ}$ C. The spectrum (a) is a reference of gaseous pure CAL, indicating $v(C=O)$ at 1740 cm^{-1}. $v(C=C)$ was too weak under the conditions used. The absorbance in N_2 was very weak due to a less solubility of CAL in N_2 . In contrast, CAL can be more soluble in dense CO_2 , leading to stronger absorption (b–e). The absorption of $v(C=O)$ in dense $CO₂$ red-shifted compared with gaseous CAL and $v(C=C)$ appeared at 1630 cm⁻¹ in 8.5 MPa CO₂. Further it was red-shifted a little with increasing $CO₂$ pressure. The dotted lines show the results in the presence of 4.0 MPa H_2 , which has only a marginal effect. Moreover, the absorbance of $v(C=O)$ of $CO₂$ split into two peaks at 8.5 MPa from a single peak at 1.5 MPa, and these peaks split further to four peaks in the presence of CAL (Fig. 2), indicating the existence of interactions between CAL and CO₂ molecules in a gas state. For a CO₂ molecule, the carbon atom is partially positive and the oxygen atoms are partially negative. Thus, a $C-H\cdots O$ hydrogen bond should exist between CO₂ molecules and carbonyl groups even though it is weaker than O–H…O bonds.11 The specific interaction of $CO₂$ molecules with Lewis base groups, especially carbonyl groups, through a C–H…O hydrogen bond has been reported.^{11,12} In addition, interactions are known to exist between $CO₂$ and transition metal complexes, as reviewed by Leitner.¹³ We may assume that the above mentioned interactions exist in the CO₂-expanded CAL liquid phase as well.

When the reaction occurs in the $CO₂$ -expanded CAL phase, the high H_2 concentration (factor 1) is chiefly responsible for the increased CAL conversion and the high CAL concentration (factor

Fig. 2 FTIR spectra of pure CO_2 and mixture of CO_2 and CAL at 50 °C.

2) and $CAL-CO₂$ interactions (factor 3) for the high COL selectivity. The interactions may make the carbonyl group of CAL molecules more polar and reactive. It still remains unsolved whether $CO₂$ molecules have effects on the specific activity of the Ru complex in the CO_2 -expanded CAL liquid phase (and in the $CO₂$ -rich gas phase). For a catalyst of supported metal particles, direct effects of $CO₂$ on their properties were previously suggested.¹⁴

In summary, the $CO₂$ -expanded substrate liquid phase has potential as a green reaction medium that does not need additional organic solvent.

Notes and references

 \dagger Hydrogenation of CAL in scCO₂ was carried out at 50 °C in a 50 mL high-pressure stainless steel reactor and a catalyst prepared from $RuCl₃$ and bis(pentafluorophenyl) phenylphosphine was used. This ligand was selected due to its high effectiveness in scCO₂ and the method of Ru complex preparation was described elsewhere.⁸ The phase behavior and solubility of Ru complex and CAL in pure CO_2 and in $H_2 + CO_2$ were examined by visual observations with a 10 mL high-pressure sapphirewindowed view cell.⁸ The reaction was conducted under different conditions, at which the reaction system was homogeneous or heterogeneous.

{ The FTIR spectra were measured with 0.01 mL CAL using a 1.5 mL high pressure cell in a path length of 4 mm at 50 $^{\circ}$ C.

- 1 S. Hadida, M. S. Super, E. J. Beckman and D. P. Curran, J. Am. Chem. Soc., 1997, 119, 7406.
- 2 G. Francio, K. Wittmann and W. Leitner, J. Organomet. Chem., 2001, 621, 130.
- 3 M. F. Sellin and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 2000, 1681.
- 4 D. Chouchi, D. Gourgouillon, M. Courel, J. Vital and M. N. Ponte, Ind. Eng. Chem. Res., 2001, 40, 2551.
- 5 M. Wei, G. T. Musie, D. H. Busch and B. Subramaniam, J. Am. Chem. Soc., 2002, 124, 2513.
- 6 G. Musie, M. Wei, B. Subramaniam and D. H. Busch, Coord. Chem. Rev., 2001, 219-221, 789.
- 7 P. G. Jessop, R. R. Stanley, R. A. Brown, C. A. Eckert, C. L. Liotta, T. T. Ngo and P. Pollet, Green Chem., 2003, 5, 123.
- 8 F. Y. Zhao, Y. Ikushima, M. Chatterjee, O. Sato and M. Arai, J. Supercrit. Fluids, 2003, 27, 65.
- 9 M. Shirai, T. Tanaka and M. Arai, J. Mol. Catal. A, 2001, 168, 99.
- 10 P. Gallezot and D. Richard, Catal. Rev. Sci .Eng., 1998, 40, 81.
- 11 P. Raveendran and S. L. Wallen, J. Am. Chem. Soc., 2002, 124, 12590.
- 12 J. C. Meredith, K. P. Johnston, J. M. Seminario, S. G. Kazarian and C. A. Eckert, J. Phys. Chem., 1996, 100, 10837.
- 13 W. Leitner, Coord. Chem. Rev., 1996, 153, 257.
- 14 M. Arai, Y. Nishiyama and Y. Ikushima, J. Supercrit. Fluids, 1998, 13, 149.